
Systems Engineering Process

Richard Shelton
Veridian

407-658-0044 x256
richard.shelton@veridian.com

Agenda

• Process Overview
• Requirements Engineering/Analysis
• Design
• Development
• Integration
• Verification
• Gap Assessment
• Security
• Summary

Process Overview

Process, Process, Process
• The good engineers, designers, coders are ready and eager

to jump in and build something, which is great!
• Lots of tools out there the help you sort, maintain, design,

develop, test and such: DOORS, RTM, CORE, Rational
Rose, Clearcase, Exceed, etc…

• Establish the plans and processes that define the life cycle
of the program and know how to get there from here

• Lots of standards available to follow: ISO 9001, ISO
12207, CMM/SEI, Mil-Std-4998, Mil-Std-1521, etc…

BUT, don’t get ahead of yourself and not know
where you are going

Life Cycle Development Process Example

 Dependency Matrix

• Develop integration plans &
procedures

• Support AFA and FI events
• Conduct WARSIM integration
• Validate proper functionality
with KE

SYSTEMS
INTEGRATION

System

Test

Report
System

Test

Procedure

• Requirements derivation
to create/baseline
System Requirements

• Create high-level system
architecture

• Allocate performance &
functional requirements
across functional areas

• Conduct KA parametrics
development

SYSTEM ANALYSIS

“CDR”

“VRM”

REQUIREMENTS
ENGINEERING

• Review contract scope
• Establish requirements
database (DOORS?)
and assoicated
traceability schema

• Identify and incorporate
technical/Mil-Std
reference documents

• Define system reqts

Reqts
DB

PROGRAM
SCOPE

• IPR-H & IPR-L
• Code/Unit Test
• Conduct peer/code
reviews

• Conduct SWIT
• Validate with KE

SOFTWARE
DES/DEV/TEST

• Hardware details
• Network layouts
• Site surveys (if
necessary)

• “ICD” or “IICD” as
appropriate

HARDWARE & I/F
DESIGN

• Monitor/integrate with
other developers

• Define gaps or risks
with dependencies

• Perform KA/KE as
required

GAP ANALYSIS/
RISK ASSESSMENT

• Analyze System reqts
• Derive SW reqts
• Identify
dependencies

• Coordinate baseline
with customer/user

SOFTWARE
ANALYSIS

• Analyze System reqts
• Derive HW reqts
• Define dependencies
(I/F, COTS, GOTS,
GFE, etc.)

• Coordinate with
customer/user

HARDWARE
ANALYSIS

• Analyze System reqts
• Define interfaces,
dependencies &
development done by
other than M&S IPT

• Coordinate with
customer/user

INTERFACE &
DEPENDENCY

ANALYSIS

IMPACTS and
PROGRAM

SCOPE
ASSESSMENT

or
REDIRECTION

Reqts

 R
eports

or.

Views

• Develop System Test Plan
and Procedures

• Execute System Test and
requirements verification

• Correct Problems
• Retest and/or Regression Test

SYSTEM TEST AND
REQTS VERIFICATION

System

Test

Plan
Security

Authoriza
tion

Agreement

System

Security

Test

Report

System

Note: System Security
part of every function

and process!

IPR-R

Another Life Cycle Development Process Example

Develop Unit Integration Test

Execute Integration and Test
Correct Problems
Retest and/or Regression

Update X-prod matrix

Update X-prod matrix
Conduct Unit tests
Design/develop CI’s

Update X-prod matrix
Conduct Unit tests
Design/develop CI’s

–
–

Establish requirements
database (DOORS) and

schema
–

waveguide

associated traceability

Identify and incorporate

reference documents
technical (

Review/baseline PIDS
and

Identify/

DOORS
DB

)

REQUIREMENTS
ENGINEERING

–
Plan and Procedures

–
–
–

Test

BUILD INTEGRATION
AND TEST

PROGRAM
SCOPE

System

Test

Report

Integration
Test Folders

Build

Plan

and

Integra -

 tio
n

IRM

System

Test

DocumentSystem

Test

Plan

OTHER
SUPPORT DATA

F-22

JSF

Boeing

X-Product
Interactions

Matrix

PDR

– Create/baseline SSS
 GPS

– Develop system design
– alllocate

performance and
functional requirements
across functional areas

SYSTEM ANALYSIS

SRR

– Develop System Test
Plan and Procedures

– Execute System Test
– Correct Problems
– Retest and/or

Regression Test

SYSTEM TEST

– Derive requirements
– Begin X-product

interaction matrix

SOFTWARE
ANALYSIS

– Derive requirements
– Begin X-product

interaction matrix

HARDWARE
ANALYSIS

interaction matrix

INTERFACE
ANALYSIS

–
–
–

SOFTWARE
DES/DEV/TEST

–
–
–

HARDWARE
DES/DEV/TEST

– Design/develop CI’s
– Conduct Unit tests
–

INTERFACE
DES/DEV/TEST

– Verification &
validation testing

– First delivery

PRODUCT
VERIFICATION
& DELIVERY

IV&V

CDR

VRM
System

Test Folders

–
Begin X-product
Derive requirements

–

Requirements
Engineering/Analysis

Most Critical Components
• Define the concepts from the user’s perspective for everyone

to have the same vision
– Everyone must see the vision to and talk the same language
– Flow data from Concept Exploration of programs, from docs like:

• Concept of Operations (CONOPS)
• Conceptual Model of the User’s Space (CMUS)

• Provide a dedicated, comprehensive team to conduct a proper
and sufficient requirements engineering
– Include all functional areas (HW, SW, Safety,

Security, ILS, Training, Interfaces, Test,
Human Factors, etc.)

– Understand time constraints and budget teams
efforts accordingly

• Establish detailed schema for tracing requirements from
users and customers to verification of final product

Generic Requirements Traceability Approach

IRSHRS

Customer
(Contractual)

Baseline

ORD/
SRD
Mil-
Stds
Tech
Specs

Program
Development

Baseline
(Scope)
System

requirements
(direct copy of

customer
and/or

derived)

System
Constraints

(including SW
and Env.)

System
Guidelines

System Test or
Requirements
Verification

Verification
methods

Test Results
(incl.

Analysis, QA
and re-test)

Test Plans &
Procedures

SRSSRSSRS HRSHRS IRSIRS

Unit
tests

Unit
tests

Unit
tests

SRS – Software Requirements Specification
HRS – Hardware Requirements Specification
IRS – Interface Requirements Specification

Systematic requirements engineering is what Veridian excels in

Design

Some Design Basics
• Allocate your requirements across the functional areas

of your program
– General functional area examples: Hardware, Software,

Interfaces (i.e. C4I), Safety, Security, Training
– Specific functional area examples:

• Hardware: avionics, communications, network
• Software: sensor, platform, environment, database

• Let designers do their job, but provide process and
overview direction
– From a Systems Engineering standpoint,

facilitate the process, helping define the “goes
into” and “goes out of” (entry and exit criteria
for this phase)

– Let (make) the software and hardware
designers design and derive the answers (let
them share or take ownership of the problems)

Development

Development Basics

• Again, the System Engineer facilitates the process,
helping define the entry and exit criteria, but let
the developers develop

• Scope analysis and peer reviews are important
– Developers take understandable pride in their efforts,

and often want to make it the best possible product they
can, but when is it too much?

• Review what they are creating and make sure it meets
requirements, but don’t lose scope control

• Excess functionality takes time to develop that may
be needed later in the program schedule

– Use peer reviews as an integrated effort to
give everyone a common understanding of the
product

Integration

Start Small and Simple
• Many programs take much longer than planned for

integration
– Trying to do a complete integration at once
– Avoiding perceived “unnecessary” cost of testing “more

than once”
• Integrate small pieces at a time by testing single

functional threads at a time until you’re comfortable
with interfaces that cross domain boundaries

• Let the developers and users provide insights into
validity of behaviors and results

• Lean on the experience of component
testers who know how the interfaces are
supposed to work

Verification

• Verification proves to the user that you met the
systems requirements he agreed to at the beginning of
the program

• Remember that by this point, you’ve already tested
the functionality several times through unit testing,
integration testing, and some system testing
– Use traceability and analysis to fold lower level testing,

including test plans and procedures, up into the system
verification

Re-use and Traceability Analysis

– Your system requirements should trace
down into each subcomponent and back
up into an integrated system (reminder,
build it into your requirements schema in
the beginning)

Gap Assessment

Find the Holes Sooner than Later

• As you go along, incorporate periodic reviews of
your requirements versus designs and products
– Determine if all the requirements were properly

“flowed down” and are being satisfied
– People forget to go back and reread the CONOPS and

requirements to remind them (and focus them) on the
scope of their efforts

• Tracing requirements from top to bottom, and then
back to top, is very complex
– Double-check traces before blaming the

designers/developers of missing
something

– Many times the design is there, but the
traces are not

Security

Always Keep It in the Forefront

• Train your folks, multiple times if necessary, to
make sure security is leading their designs and
products
– Putting in guards, firewalls, gateways or work-arounds

later to correct poor security can be very, very
expensive

– Make sure your entire team understands the security
vision and approach

• Know the requirements (NISPOM, DCID, etc.)
and ways they can be met
– Understand tools in industry that makes

your security job and designs easier
– It’s always changing and getting better

Summary

Main Points

• Take the time to do the requirements engineering
right the first time

• Many tools available to help take you from
requirements to design, but remember basic
principles:
– Maintain focus and scope, don’t burst your requirements

bubble with “bells and whistles” or “requirements creep”
– Get and maintain a common vision that

everyone understands and works towards
– Don’t get caught in the weeds, let

designers and developers do their job, but
help them stay on track

A Few Lessons Learned

• Keep the users involved in every step
• Tracing must be precise and complete

– Else FRT (Forward Requirements Trace) and BRT (Backward
Requirements Trace) will be useless

– Any System requirement not traced downward (or properly “stubbed”)
will be considered not satisfied and a development “hole”

– Any Derived requirement not traced upward will be considered out of
scope and not appropriate for development baseline

– PLEASE don’t use internal links; structure the document so these will not
be necessary (see Vern for details and help)

• Actual printed documentation (System Spec, SRS, HRS,
etc.) will be outdated references and should only be printed
and understood as being “dated” view of the development
baseline
– The current development baseline will only be in the configuration

managed DOORS database
– Everyone can view most current data immediately via tool, avoiding

having to check if the paper copy is current, or what’s changed

An SBA Modeling and Simulation Perspective

• Simulation Based Acquisition (SBA) feeds and
draws from the Systems Engineering
Development Life Cycle
– To help scope the program
– Uses Modeling and Simulation to help

• Bound and define the scope
• Performance and effectivity of the functions and products

before or as part of deriving the software, hardware, interface,
safety and security requirements

Systems Engineering

Program
Scope

(MNS, ORD)

Integration &
Test

Develop
System

Training &
Deployment

Requirements
Engineering

Functional Baseline

Architecture Design

Knowledge Acquisition Retirement

Users

Program
Management
(PMP, IMP, IMS)

Back-up

Traceability
(Backup)

Requirements Database

Effective Database Application/Traceability is Critical

• Effective database application and traceability is critical to
support:
– Efficient configuration management and change control (database

control of access and distribution)
– Everyone (with proper access) can see current documentation and

any updates or change history
– Quick analysis or definition of change impacts (forward for

requirements changes and reverse for design and test changes)
– Support requirements verification and validation efforts
– Easier SEI Level 3 compliance

User changes
requirements

SSS
change

Software
Requirements

Change

Hardware
Requirements

Change

Interface
Requirements

Change

Unit
tests

change

System
test

change

Requirements database

Forward and Backwards Tracing

PIDS reqt
xyz

change

CNIRD
reqt abc1
change

SSS reqt
abc2

change

SSS reqt
abc3

change

HW reqt
123 change

SW reqt x11
change

SW reqt y22
change SW reqt a33

change

SW reqt b44
change

SW reqt k55
changeHW reqt

567 change

I/F reqt gbz
change

I/F reqt bkd
change

Unit and
System
testing

System test
#15763xyz

failure
problem
report

SW reqt d75
affected

SW reqt j32
affected

HW reqt
999 affected

I/F reqt lhf
affected

I/F reqt kdl
affected

SSS reqt
mno2

affected
SSS reqt

fgh3
affected
SSS reqt

opr3
affected

SSS reqt
abc1

change

Requirements
Database

Interface
Derived

Requirements

Interface
Derived

Requirements

Software
Derived

Requirements

Software
Derived

Requirements

Hardware
Derived

Requirements

Hardware
Derived

Requirements

Example Database/Traceability Schema

ORD/
SRD

MIL-STDS

SSS

 SSDD (not actually in database, but focuses design and requirements allocation)

Hardware
Derived

Requirements

Customer
Directed
(contractual)

Systems Eng.
Developed

Design Eng.
Developed

Unit Tests

System Test and Requirements Verification
Test Eng.
Developed

Software
Derived

Requirements

Interface
Derived

Requirements

Technical
Specs

...

JSIMS

Requirements Development Guidelines
• Requirements tell you “what”, not “how”. Do not constrain designers by

requiring certain implementations, hardware, etc.
• Derived requirements can have multiple levels, with the lowest level defining

a single, testable “function”
• Write positive requirements, avoid putting “shall not…”, such as

“…CSCI/HWCI shall not send …”
• Double-check to make sure requirements are testable and supportable

– Be specific about “what” you require, and avoid open ended statements containing “may
be”, “to include” or “might consist of”

– If it’s a performance related requirement, then bound the statement (throughput required,
word-size, cooling capacity, etc.) so it can be tested

– Do not define your test method in the requirement, such as “this requirement may be
verified by analysis (SSDD 4.1.0.0.2.1, 00-00040); leave that for the test folks to define
during verification method definition

– Do not reference other documents in total, as that may require testers to
verify performance against the entire document, but rather be precise in
what you reference; note: it’s best not to reference any external document
to avoid constant updates or configuration management problems

– Be sure technology and program resources support the requirements (i.e.
don’t require hardwire or systems not available or unaffordable); besides,
don’t write constraining design or implementation requirements, focus on
functionality

